En los sensores generadores o pasivos, en cambio, la energía de salida es suministrada por la entrada. Los sensores moduladores requieren en general más hilos que los generadores, ya que la energía de alimentación suele suministrarse mediante hilos distintos a los empleados para la señal. Además, esta presencia de energía auxiliar puede crear un peligro de explosiones en algunos ambientes. Por contra, su sensibilidad se puede modificar a través de la señal de alimentación, lo que no permiten los sensores generadores
Sensores Generadores
En los sensores generadores o pasivos, en cambio, la energía de salida es suministrada por la entrada. Los sensores moduladores requieren en general más hilos que los generadores, ya que la energía de alimentación suele suministrarse mediante hilos distintos a los empleados para la señal. Además, esta presencia de energía auxiliar puede crear un peligro de explosiones en algunos ambientes. Por contra, su sensibilidad se puede modificar a través de la señal de alimentación, lo que no permiten los sensores generadores
Efecto Reversible
Efecto Irreversible
Efecto Termoelectrico
Tipos:
- Reversibles: Efecto Peltier, Efecto Thompson.
- Irreversibles: Efecto Joule.
Efecto Peltier
Consiste en el calentamiento o enfriamiento de la unión de dos metales distintos al pasar una corriente por ellos. Al invertir el sentido de la corriente se invierte también el sentido del flujo de calor.
Efecto Thompson
Efecto Seebeck
Termopares
El grupo de termopares conectados en serie recibe el nombre de termopila. Tanto los termopares como las termopilas son muy usados en aplicaciones de calefacción a gas.
Tipos de Termopares
Tipo R: (Platino (Pt)-Rodio (Rh)): adecuados para la medición de temperaturas de hasta 1.300 ºC. Su baja sensibilidad (10 µV/°C) y su elevado precio quitan su atractivo.
Tipo S: (Platino / Rodio): ideales para mediciones de altas temperaturas hasta los 1.300 ºC, pero su baja sensibilidad (10 µV/°C) y su elevado precio lo convierten en un instrumento no adecuado para el uso general. Debido a su elevada estabilidad, el tipo S es utilizado para la calibración universal del punto de fusión del oro (1064,43 °C).
Los termopares con una baja sensibilidad, como en el caso de los tipos B, R y S, tienen además una resolución menor. La selección de termopares es importante para asegurarse que cubren el rango de temperaturas a determinar.
Construcción de Termopares.
Desde el punto de vista constructivo, la unión puede hacerse por contacto (arrollamiento), o soldadura. Para conseguir la inmunidad requerida frente al medio en función de los materiales y del ambiente de trabajo, el termopar puede aparecer al aire o incluido dentro de una vaina protectora (lo que resulta determinante en la velocidad de respuesta). En este último caso, la unión puede conectarse a la vaina (puesta a tierra) o quedar eléctricamente aislada.Los requerimientos más importantes que deben cumplir los materiales de termocuplas son:
- Ser mecánicamente robustos y resistentes químicamente.
- Deben producir una salida eléctrica mensurable y estable.
- Deben tener la precisión requerida.
- Deben responder con la velocidad necesaria
- Debe considerarse la transferencia de calor al medio y viceversa para no afectar la lectura.
- Deben, en algunos casos, estar aislados eléctricamente de masa
- Deben ser económicos .
Normas de Aplicación Practica por los Termopares
Ley de los metales intermedios
La suma algebraica de las fuerzas termoelectromotrices en un circuito compuesto por un número cualquiera de metales distintos es cero si todo el circuito se encuentra a temperatura uniforme.
Ley de las temperaturas sucesivas o intermedias.
Dos metales homogéneos diferentes producen una tensión V12, cuando sus uniones están a T1 y T2, y,
Hay una tensión V23 cuando están a temperaturas T2 y T3,
Entonces, la tensión que aparecerá cuando las uniones se encuentren a T1 y T3 será la suma de las caídas de tensión V12 + V23 e igual a V13.
Efecto de la Temperatura Ambiente en la Unión de Referencia de los Termopares
Compensación de la Unión de Referencia en Circuitos de Termopares.
VD(25ºC)=0.6V y dVD/dT=-2 mV/ºC
Tabla Estandar de Termopares
Sensores Piezoeléctricos
En el efecto Piezo-Eléctrico la energía pasa de eléctrica a mecánica. Fue descubierto en el siglo XIX (circa 1880), por los hermanos Curie. Su principio está basado en la fuerza o presión aplicada a una sustancia compuesta por cristales polarizados (piezo significa presión en griego). Al ejercer presión sobre el cristal, éste se desforma produciendo una descarga eléctrica. Esto significa que en los micrófonos piezo-eléctricos, la presión acústica se transforma en voltaje.
El efecto Piezo-Eléctrico es conmutativo y también funciona en forma opuesta contraria a su dirección original. Esto quiere decir que al aplicar una descarga eléctrica a un cristal polarizado, el cristal se desforma produciendo un movimiento que genera presión acústica.
Las limitaciones para este tipo de sensores son:
•La resistencia eléctrica que presentan los materiales piezoeléctricos aunque es muy grande no es infinita. De modo que al aplicar un esfuerzo constante se genera inicialmente una carga que inevitablemente es drenada al cabo de un tiempo. Por lo tanto, no tienen respuesta en continua.
•Estos sensores presentan un pico en la respuesta para la frecuencia de resonancia. Por tanto, es preciso trabajar siempre a frecuencias muy inferiores a la de resonancia mecánica.
•La impedancia de salida de estos sensores es muy alta, por lo que para medir la tensión de salida es preciso utilizar amplificadores con una impedancia de entrada enorme. Son los denominados amplificadores electrométricos o de carga.
Algunas de las ventajas de los sensores piezoeléctricos son:
•Alta sensibilidad, obtenida muchas veces a bajo coste.
•Alta rigidez mecánica; las deformaciones experimentadas son inferiores a 1μm. Esta alta impedancia mecánica es conveniente para la medida de variables esfuerzo (fuerza, presión)
•Pequeño tamaño y posibilidad de obtener dispositivos con sensibilidad unidireccional.
Sensores Piroeléctricos
Sensores Fotoeléctricos
Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas.
Una de las aplicaciones que se le dan a estos sensores es para verificar o detectar movimiento de objetos que interrumpen el haz de luz entre el emisor y el receptor, bien sea para contar revoluciones por segundo, o el tiempo de interrupcion.